

Association Mappings with JPA and Hibernate

www.thoughts-on-java.org

Association Mappings
Association mappings are one of the key features of JPA and
Hibernate. They model the relationship between two database tables
as attributes in your domain model. That allows you to easily navigate
the associations in your domain model and JPQL or Criteria queries.

JPA and Hibernate support the same associations as you know from
your relational database model. You can use:

 one-to-one associations,
 many-to-one associations and
 many-to-many associations.

You can map each of them as a uni- or bidirectional association. That
means you can either model them as an attribute on only one of the
associated entities or on both. That has no impact on your database
mapping, but it defines in which direction you can use the
relationship in your domain model and JPQL or Criteria queries

Many-to-One Associations
An order consists of multiple items, but each item belongs to only
one order. That is a typical example for a many-to-one association. If
you want to model this in your database model, you need to store the
primary key of the Order record as a foreign key in the OrderItem
table.

Unidirectional Many-to-One Association
As you can see in the following code snippet, you can model this
association with an attribute of type Order and a @ManyToOne
annotation. The Order order attribute models the association, and the
annotation tells Hibernate how to map it to the database. You can use
the optional @JoinColumn annotation to define the name of the foreign
key column.

http://www.thoughts-on-java.org/

Association Mappings with JPA and Hibernate

www.thoughts-on-java.org

Unidirectional One-to-Many Association
The basic mapping definition is very similar to the many-to-one
association. It consist of the List items attribute which stores the
associated entities and a @OneToMany association.

But this is most likely not the mapping you’re looking for because
Hibernate uses an association table to map the relationship. If you want
to avoid that, you need to use a @JoinColumn annotation to specify the
foreign key column.

@Entity

public class OrderItem {

 @ManyToOne

 @JoinColumn(name = “fk_order”)

 private Order order;

 …

}

@Entity

public class Order {

 @OneToMany

 @JoinColumn(name = “fk_order”)

 private List items = new ArrayList();

 …

}

http://www.thoughts-on-java.org/

Association Mappings with JPA and Hibernate

www.thoughts-on-java.org

Bidirectional Many-to-One Associations
The bidirectional Many-to-One association mapping is the most
common way to model this relationship with JPA and Hibernate. It
uses an attribute on the Order and the OrderItem entity. This allows
you to navigate the association in both directions in your domain
model and your JPQL queries.

The mapping definition consists of 2 parts:

 the to-many side of the association which owns the relationship
mapping and

 the to-one side which just references the mapping

The mapping specification of the owning side is identical to the
unidirectional mapping.

The definition of the referencing part is a lot simpler. You just need to
reference the owning association mapping. You can do that by
providing the name of the association-mapping attribute to the
mappedBy attribute of the @OneToMany annotation. In this example,
that’s the order attribute of the OrderItem entity.

@Entity

public class OrderItem {

 @ManyToOne

 @JoinColumn(name = “fk_order”)

 private Order order;

 …

}

http://www.thoughts-on-java.org/

Association Mappings with JPA and Hibernate

www.thoughts-on-java.org

Adding and removing entities from a bidirectional association
requires you to update both sides of the relationship. That is an error-
prone task, and a lot of developers prefer to implement it in a utility
method which updates both entities.

@Entity

public class Order {

 @OneToMany(mappedBy = “order”)

 private List items = new ArrayList();

 …

}

@Entity

public class Order {

 …

 public void addItem(OrderItem item) {

 this.items.add(item);

 item.setOrder(this);

 }

 …

}

http://www.thoughts-on-java.org/

Association Mappings with JPA and Hibernate

www.thoughts-on-java.org

Many-to-Many Associations
Many-to-Many relationships are another often used association type.
On the database level, it requires an additional association table
which contains the primary key pairs of the associated entities. But
as you will see, you don’t need to map this table to an entity.

A typical example for such a many-to-many association are Products
and Stores. Each Store sells multiple Products and each Product gets
sold in multiple Stores.

Unidirectional Many-to-Many Associations
Similar to the previously discussed mappings, the unidirectional many-
to-many relationship mapping requires an entity attribute and a
@ManyToMany annotation.

@Entity

public class Store {

 @ManyToMany

 @JoinTable(name = “store_product”,

 joinColumns = {@JoinColumn(name = “fk_store”)},

 inverseJoinColumns =

{@JoinColumn(name = “fk_product”)})

 private List<Product> products =

new ArrayList<Product>();

 …

}

http://www.thoughts-on-java.org/

Association Mappings with JPA and Hibernate

www.thoughts-on-java.org

You can customize the join table with the @JoinTable annotation and its
attributes joinColumns and inverseJoinColumns. The joinColumns
attribute defines the foreign key columns for the entity on which you
define the association mapping. The inverseJoinColumns attribute
specifies the foreign key columns of the associated entity.

Bidirectional Many-to-Many Associations
The bidirectional relationship mapping allows you to navigate the
association in both directions. The association mapping consists of
an owning and a referencing part. The owning part provides all
mapping information and the referencing part only links to it.

The mapping of the owning side is identical to the unidirectional
many-to-many association mapping.

@Entity

public class Store {

 @ManyToMany

 @JoinTable(name = “store_product”,

 joinColumns = {@JoinColumn(name = “fk_store”)},

 inverseJoinColumns =

{@JoinColumn(name = “fk_product”)})

 private List<Product> products =

new ArrayList<Product>();

 …

}

http://www.thoughts-on-java.org/

Association Mappings with JPA and Hibernate

www.thoughts-on-java.org

The mapping for the referencing side of the relationship is a lot
easier. You just need to reference the attribute that owns the
association.

You need to update both ends of a bidirectional association when you
want to add or remove an entity. It’s a good practice to provide
helper methods which update the associated entities.

@Entity

public class Product{

 @ManyToMany(mappedBy=”products”)

 private List<Store> stores = new ArrayList<Store>();

 …

}

@Entity

public class Store {

 public void addProduct(Product p) {

 this.products.add(p);

 p.getStores().add(this);

 }

 public void removeProduct(Product p) {

 this.products.remove(p);

 p.getStores().remove(this);

 }

 …

}

http://www.thoughts-on-java.org/

Association Mappings with JPA and Hibernate

www.thoughts-on-java.org

One-to-One Associations
An example for a one-to-one association could be a Customer and
the ShippingAddress. Each Customer has exactly one
ShippingAddress and each ShippingAddress belongs to one
Customer. On the database level, this mapped by a foreign key
column either on the ShippingAddress or the Customer table.

Unidirectional One-to-One Associations
The required mapping is similar to the previously discussed
mappings. You need an entity attribute that represents the
association, and you have to annotate it with an @OneToOne
annotation.

Bidirectional One-to-One Associations
The bidirectional one-to-one relationship mapping extends the
unidirectional mapping with an association-referencing side so that you
can navigate it in both direction.

@Entity

public class Customer{

 @OneToOne

 @JoinColumn(name = “fk_shippingaddress”)

 private ShippingAddress shippingAddress;

 …

}

http://www.thoughts-on-java.org/

Association Mappings with JPA and Hibernate

www.thoughts-on-java.org

The definition of the owning side of the mapping is identical to the
unidirectional mapping.

The referencing side of the association just links to the attribute that
owns the relationship.

@Entity

public class Customer{

 @OneToOne

 @JoinColumn(name = “fk_shippingaddress”)

 private ShippingAddress shippingAddress;

 …

}

@Entity

public class ShippingAddress{

 @OneToOne(mappedBy = “shippingAddress”)

 private Customer customer;

 …

}

http://www.thoughts-on-java.org/

